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Abstract
Elliptically contoured random fields are natural extensions of the Gaussian
random field, and may or may not have second-order moments. A second-
order elliptically contoured random field is determined by its mean and
covariance functions, just like the Gaussian one. This paper proposes a class of
covariance functions for second-order elliptically contoured random fields by
using the nonnegative mixture method, which possess the following properties:
nonseparable, nonstationary but with the stationary case as a special case, and
allowing for both positive and negative correlation. Some long-range dependent
models are also derived.

PACS number: 02.50.Ey
Mathematics Subject Classification: 60G12, 60G15, 60G60, 62M30, 42A82

1. Introduction

To analyze and model spacetime uncertainty in various geophysical, informational,
environmental, biological and economic systems, we often treat the data as the realizations of
spacetime random fields and then employ statistical and probabilistic techniques to describe
observed variabilities, to model the data, and to predict future or neighborhood values
[3, 7, 12, 18, 19, 21, 23–25, 32–34, 37]. One of the most popularly used random fields
is the Gaussian one, which is completely characterized by its mean and covariance functions.
In practice, however, there are often specific reasons for assuming particular non-Gaussian
finite-dimensional distributions. For instance, the study of Euclidean quantum field theory in
physics is essentially the study of Gaussian and related random fields, but it is really only the
non-Gaussian ones that are physically interesting [1]. While sea surfaces are often modeled
as random fields, a Gaussian field is not a precise model of reality, a fact confirmed by
the non-Gaussian nature of some of the empirical statistics complied from sea surface data
[31]. Non-Gaussian processes arise naturally in statistical physics, and occur typically in
situations where coalescence may occur between entities (domain, cluster, etc) of comparable
size [8]. Several quantities arising in practical engineering problems (e.g. material, geometric
properties, soil properties, wind, wave, earthquake loads) exhibit non-Gaussian probabilistic
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characteristics [13, 14, 15, 38]. The signals and noise encountered in signal processing
environment are often not Gaussian (e.g. [36]). This motivates us to construct non-Gaussian
random fields with various properties for theoretical study and practical use.

Suppose that {Z(s; t), s ∈ S, t ∈ T } is a real-valued random field over a spacetime index
domain S × T , where S equals R

d or Z
d and T equals R or Z. The variogram (or structure

function) and covariance function of the random field are respectively defined by

γ (s1, s2; t1, t2) = 1
2 var(Z(s1; t1) − Z(s2; t2)),

and

C(s1, s2; t1, t2) = E[{Z(s1; t1) − EZ(s1; t1)}{Z(s2; t2) − EZ(s2; t2)}],
(sk; tk) ∈ S × T , k = 1, 2,

whenever they exist, where E denotes the expectation operator and var(Z) is the variance of
a random variable Z. The existence of the covariance function implies that of the variogram,
with the relationship

γ (s1, s2; t1, t2) = 1
2C(s1, s1; t1, t1) + 1

2C(s2, s2; t2, t2) − C(s1, s2; t1, t2),

(sk; tk) ∈ S × T , k = 1, 2,

but not vice versa.
For spatio-temporal data analysis in practice, simplifying assumptions such as intrinsic

stationarity or (weak, second-order) stationarity are typically required. Here ‘stationarity’
is often replaced by ‘homogeneity’. A random field {Z(s; t), s ∈ S, t ∈ T } is said to be
stationary in spacetime, if its mean function EZ(s; t) is a constant, and its covariance function
C(s1, s2; t1, t2) depends only on the spatial lag s1 − s2 and the temporal lag t1 − t2. In such a
case, we write C(s1 − s2; t1 − t2) instead of C(s1, s2; t1, t2) and call it a stationary covariance
function on S × T .

The intrinsic stationarity is based on the variogram but not on the covariance, and is thus
weaker than stationarity. The random field {Z(s; t), s ∈ S, t ∈ T } is said to be intrinsically
stationary in spacetime (or have stationary increments in spacetime) if, for any (s0; t0) ∈ S×T ,
the increment

{Z(s + s0; t + t0) − Z(s0; t0), s ∈ S, t ∈ T }
is stationary in spacetime or, equivalently, if E{Z(s + s0; t + t0) − Z(s0; t0)} is a constant for
any (s0; t0) ∈ S × T , and γ (s1, s2; t1, t2) depends only on s1 − s2 and t1 − t2. Alternatively,
γ (s1, s2; t1, t2) will be written as γ (s1 − s2; t1 − t2) and called an intrinsically stationary
variogram on S × T .

According to Kolmogorov’s existence theorem, a positive definite function on S × T
can always be thought of as the covariance function of a zero-mean Gaussian random
field. The question is: for a given positive definite function, is there any other possibility
for the underlying finite-dimensional distributions? There are rarely few answers to this
question, except for the counterexamples in [2] and [29]. Surprisingly, the so-called Gaussian
covariance, exp(−‖s‖2), s ∈ R

d , cannot be a covariance function associated with any log-
Gaussian random field, where ‖s‖ = (∑d

k=1 s2
k

)1/2
is the Euclidean norm of s ∈ R

d . Also,
it is not clear what kind of positive definite function could be the covariance function of
a binary random field. Recently, a novel and simple method has been provided in [26]
for constructing many non-Gaussian random fields with any given correlation structure and
with the corresponding finite-dimensional distributions identified, of which a particular class
is elliptically contoured random fields. An elliptically contoured stochastic process is also
called a spherically invariant random process, and is defined in [41]. Theorem 2 (iii) of [16]
characterizes the spherically invariant process as a scale mixture of the Gaussian process.
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Our special attention in this paper is paid to spacetime Gaussian random fields and
second-order elliptically contoured random fields, for which the covariance function is the key
component. In order to describe a wide range of spacetime dependence and interaction, it is
better to have covariance functions taking both positive and negative values. A simple reason
for this is that not every mechanism in reality is always nonnegatively correlated in spacetime.
Observed covariance functions in practice, especially the ones of climatological background
errors, often change sign [40]. To get a more theoretical reason, let us consider a zero-mean
Gaussian random field {Z(s; t), s ∈ S, t ∈ T } with covariance C(s1, s2; t1, t2). It is known
[17, 35, 39] that C(s1, s2; t1, t2) is nonnegative on S × T if and only if, for every positive
integer n and any (sk; tk) ∈ S×T (k = 1, . . . , n), the random vector (Z(s1; t1), . . . , Z(sn; tn))

is associated [10] in the sense that the inequality

cov(f (Z(s1; t1), . . . , Z(sn; tn)), g(Z(s1; t1), . . . , Z(sn; tn))) � 0

holds for each pair of bounded Borel measurable functions f and g that are nondecreasing
in each argument. One of the approaches to get a covariance model taking both positive and
negative values is to work on linear combination of covariance functions [23–25].

The aim of this paper is to present a class of spacetime Gaussian and second-order
elliptically contoured random fields with nonseparable covariance functions that allow for
both positive and negative correlations. The general form is nonstationary, but, unlike some
previous papers in the literature, contains the stationary case as a special case. Some models
with long-range dependence are also derived. The main results are presented in section 2 using
the nonnegative mixture approach [25], while section 3 illustrates some parametric examples.
Since our covariance functions are semiparametric, section 4 discusses how the parameters
affect the model. The proofs of theorems occupy section 5. Section 6 offers a brief discussion
on possible applications of the presented class of the random fields in physics and applied
sciences.

2. General formulation

In this section we derive a class of spatio-temporal covariance functions. Before presenting
our models, let us recall the definition of the completely monotone function. A nonnegative
and continuous function �(x), x � 0, is completely monotone on [0,∞), if it has derivatives
of all orders on (0,∞) and the derivatives alternate in sign, i.e. for every positive integer n,
(−1)n dn

dxn �(x) � 0, x > 0. Bernstein’s theorem asserts that �(x) is completely monotone on
[0,∞) if and only if �(x) = ∫ ∞

0 exp(−xu)dμ(u), where μ(u) is a nonnegative finite measure
on [0,∞). A recent expository survey of properties of completely monotone functions as well
as various examples can be found in [30].

Our main model is formulated in the following theorem.

Theorem 1. Assume that �(x) is a completely monotone function on [0,∞), α1 and α2

are positive constants with α1 < α2 and θ0 ∈ R
d is a constant vector. If γ (s1, s2; t1, t2) is a

variogram on R
d × T , then

C(s1, s2; t1, t2) = {γ (s1, s2; t1, t2) + α1}− d
2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α1

)

−{γ (s1, s2; t1, t2) + α2}− d
2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α2

)
,

(sk; tk) ∈ R
d × T , k = 1, 2,

(2.1)

is the covariance function of a second-order elliptically contoured random field on R
d × T .
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The covariance model (2.1) is not stationary in space or in time, unless γ (s1, s2; t1, t2) is
intrinsically stationary in space or in time. A simple example of variograms is the separable
one

γ (s1, s2; t1, t2) = γS(s1, s2) + γT (t1, t2), s1, s2 ∈ R
d , t1, t2 ∈ T ,

where γS(s1, s2) and γT (t1, t2) are purely spatial and purely temporal variograms on R
d and

T , respectively. Two other examples are

(i) γ (s1 + s2; t1 + t2) + γ (s1 − s2; t1 − t2) − 1
2 {γ (2s1; 2t1) + γ (2s2; 2t2)},

(ii) 1
2 {γ (2s1; 2t1) + γ (2s2; 2t2)} − γ (s1 + s2; t1 + t2) + γ (s1 − s2; t1 − t2),

where γ (s; t) is an intrinsically stationary variogram on R
d × T , [22].

To have a spacetime covariance that is stationary in space or in time, it requires the
corresponding intrinsically stationary assumption for γ (s1, s2; t1, t2) in the construction (2.1).
For instance, if γ (s1, s2; t1, t2) is intrinsically stationary in space or in time, then (2.1) is
stationary in space or in time. As an example,∫ t1

0
(t1 − |u|)C0(0; u) du +

∫ t2

0
(t2 − |u|)C0(0; u) du −

∫ t1

0

∫ t2

0
C0(s; u − v) du dv,

s ∈ R
d , t1, t2 ∈ R,

is a variogram on R
d × R intrinsically stationary in space [24], where C0(s; t) is a stationary

covariance function on R
d × R.

The next corollary follows by assuming that γ (s1, s2; t1, t2) is intrinsically stationary in
spacetime.

Corollary 1. If γ (s; t) is an intrinsically stationary variogram on R
d × T , then

C(s; t) = {γ (s; t) + α1}− d
2 �

( ‖s + θ0t‖2

γ (s; t) + α1

)
− {γ (s; t) + α2}− d

2 �

( ‖s + θ0t‖2

γ (s; t) + α2

)
,

s ∈ R
d , t ∈ T ,

(2.2)

is a stationary covariance function on R
d × T .

In particular, when the variogram γ (s; t) in (2.2) is separable, γ (s; t) = γS(s) + γT (t),

say, we obtain

C(s; t) = {γS(s) + γT (t) + α1}− d
2 �

( ‖s + θ0t‖2

γS(s) + γT (t) + α1

)

−{γS(s) + γT (t) + α2}− d
2 �

( ‖s + θ0t‖2

γS(s) + γT (t) + α2

)
, s ∈ R

d , t ∈ T ,

which is stationary on R
d × T .

Letting α2 in (2.1) tend to infinity leads to the following corollary.

Corollary 2. For a positive constant α,

C(s1, s2; t1, t2) = {γ (s1, s2; t1, t2) + α}− d
2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α

)
,

s1, s2 ∈ R
d , t1, t2 ∈ T ,

(2.3)

is a covariance function on R
d × T .

Many particular cases of (2.3) can be obtained once γ (s1, s2; t1, t2) is specified. For
instance, when γ (s1, s2; t1, t2) reduces to a purely temporal variogram on T , the model (3.3)
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of [22] is obtained. It is now clear that (2.1) is essentially the difference of two covariance
functions on R

d × T . Linear combinations of type (2.3) are presented in the following
corollary, in the format analogous to those in [23, 24].

Corollary 3.

(i) If θ is a nonnegative constant, then

C(s1, s2; t1, t2) = θ{γ (s1, s2; t1, t2) + α1}− d
2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α1

)

+ (1 − θ){γ (s1, s2; t1, t2) + α2}− d
2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α2

)
,

s1, s2 ∈ R
d , t1, t2 ∈ T ,

(2.4)

is a covariance function on R
d × T .

(ii) Conversely, if (2.4) is a covariance function on R
d ×T in all dimensions R

d , and �(0) > 0,
then the constant θ has to be nonnegative.

One proof of the validity of (2.4) is by the observation that it is the sum of two covariances

θ

[
{γ (s1, s2; t1, t2) + α1}− d

2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α1

)

−{γ (s1, s2; t1, t2) + α2}− d
2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α2

)]

+{γ (s1, s2; t1, t2) + α2}− d
2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α2

)
,

s1, s2 ∈ R
d, t1, t2 ∈ T .

On the other hand, if (2.4) is a covariance function on R
d × T in all dimensions R

d , then

0 � C(s1, s1; t1, t1)α
d
2

1 /�(0) = θ + (1 − θ)(α2/α1)
− d

2 ,

and taking the limit as d → ∞ yields θ � 0.

Corollary 4. The function

C(s; t) = α
d
2

2 �(α2‖s + θ0t‖2) − α
d
2

1 �(α1‖s + θ0t‖2), s ∈ R
d , t ∈ T ,

is a stationary covariance function on R
d × T .

Corollary 4 follows from theorem 1 by taking γ (s1, s2; t1, t2) ≡ 0 and substituting the
vector (α1, α2) with (1/α2, 1/α1). For another format see theorem 1 (ii) of [23].

With more parameters involved, a straightforward extension of (2.1) is

C(s1, s2; t1, t2) =
p∑

k=1

(−1)k−1{γ (s1, s2; t1, t2) + αk}− d
2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + αk

)
,

(sk; tk) ∈ R
d × T , k = 1, 2,

where p is a positive integer and 0 < α1 < · · · < αp. Another type of parameterization is
included in theorem 4 of section 4.

The model (2.5) in the next theorem may be interpreted as the negative of the partial
derivative of (2.3) with respect to α, and its validity follows from theorem 1.
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Theorem 2. Assume that �(x) is a completely monotone function on [0,∞) with a finite
derivative on the right-hand side of the origin, α is a positive constant and that θ0 ∈ R

d is a
constant vector. If γ (s1, s2; t1, t2) is a variogram on R

d × T , then

C(s1, s2; t1, t2) = {γ (s1, s2; t1, t2) + α}− d+2
2

{
d

2
�

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α

)

+ ‖s2 − s1 + θ0(t2 − t1)‖2{γ (s1, s2; t1, t2) + α}−1�′
(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α

)}
,

(sk; tk) ∈ R
d × T , k = 1, 2, (2.5)

is the covariance function of a second-order elliptically contoured random field on R
d × T .

The existence of �′(0) is obviously required in theorem 2 since, otherwise, C(s, s; t, t)

would not be defined. This excludes some completely monotone functions, such as
�(x) = exp(−xν), x � 0, where ν ∈ (0, 1) is a constant.

Corollary. If γ (s; t) is an intrinsically stationary variogram on R
d × T , then

C(s; t) = {γ (s; t) + α}− d+2
2

{
d

2
�

( ‖s + θ0t‖2

γ (s; t) + α

)
+ �′

( ‖s + θ0t‖2

γ (s; t) + α

) ‖s + θ0t‖2

γ (s; t) + α

}
,

s ∈ R
d , t ∈ T ,

is a stationary covariance function on R
d × T .

Note that �(x) ≡ 1, x � 0, is a completely monotone function on [0,∞). In such a case,
(2.1) reduces to

C(s1, s2; t1, t2) = {γ (s1, s2; t1, t2) + α1}− d
2 − {γ (s1, s2; t1, t2) + α2}− d

2 ,

s1, s2 ∈ R
d , t1, t2 ∈ T .

This is actually a special case of the following theorem.

Theorem 3. Assume that ν, α1 and α2 are positive constants with α1 < α2, and that
γ (s1, s2; t1, t2) is a variogram on S × T .

(i) The function

C(s1, s2; t1, t2) = {γ (s1, s2; t1, t2) + α1}−ν − {γ (s1, s2; t1, t2) + α2}−ν,

(sk; tk) ∈ S × T , k = 1, 2,
(2.6)

is the covariance function of a second-order elliptically contoured random field on S×T .
(ii) If θ is a nonnegative constant, then

C(s1, s2; t1, t2) = θ{γ (s1, s2; t1, t2) + α1}−ν + (1 − θ){γ (s1, s2; t1, t2) + α2}−ν,

(sk; tk) ∈ S × T , k = 1, 2,
(2.7)

is the covariance function of a second-order elliptically contoured random field on S×T .
(iii) If (2.7) is a covariance function on S × T for all positive ν, then θ must be a nonnegative

constant.

Although (2.6) is the difference of two covariances, it is always nonnegative, and so is
(2.7). In contrast, the following covariance function changes sign in case ν is greater than
d/2,

C(s1, s2; t1, t2) = {γ (s1, s2; t1, t2) + α1}− d
2 +ν{‖s2 − s1 + θ0(t2 − t1)‖2

+ γ (s1, s2; t1, t2) + α1}−ν − {γ (s1, s2; t1, t2) + α2}− d
2 +ν{‖s2 − s1

+ θ0(t2 − t1)‖2 + γ (s1, s2; t1, t2) + α2}−ν, s1, s2 ∈ R
d, t1, t2 ∈ T ,

which is obtained from (2.1) by choosing �(x) = (1 + x)−ν, x � 0.

6
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For a variogram γ (s1, s2; t1, t2) on S × T , it is known [22] that

|γ 1/2(s1, 0; t1, 0) − γ 1/2(s2, 0; t2, 0)| � γ 1/2(s1, s2; t1, t2)

� γ 1/2(s1, 0; t1, 0) + γ 1/2(s2, 0; t2, 0),

s1, s2 ∈ S, t1, t2 ∈ T ,

which implies that

γ (s1, s2; t1, t2) � 2γ (s1, 0; t1, 0) + 2γ (s2, 0; t2, 0), s1, s2 ∈ S, t1, t2 ∈ T ,

and that γ (s1, s2; t1, t2) increases at most as fast as a1‖s1|2 + a2‖s2‖2 for some positive
constants a1 and a2. Therefore, (2.6) and (2.7) have long-range dependence [9].

For example, when γ (s1, s2; t1, t2) = a1‖s2−s1‖ν1 + a2|t2−t1|ν2 , where a1, a2, ν1 ∈ (0, 2]
and ν2 ∈ (0, 2] are positive constants, (2.6) becomes

C(s; t) = (a1‖s2 − s1‖ν1 + a2|t2 − t1|ν2 + α1)
−ν − (a1‖s2 − s1‖ν1 + a2|t2 − t1|ν2 + α2)

−ν,

s ∈ R
d , t ∈ R,

and decays in power law.
As another example, let

γ (s1, s2; t1, t2) = ln(1 + a1‖s2 − s1‖ν1 + a2|t2 − t1|ν2),

where a1, a2, ν1 ∈ (0, 2] and ν2 ∈ (0, 2] are positive constants. Then (2.6) decays in the
logarithm law with

C(s; t) = {ln(1 + a1‖s2 − s1‖ν1 + a2|t2 − t1|ν2) + α1}−ν

−{ln(1 + a1‖s2 − s1‖ν1 + a2|t2 − t1|ν2) + α2}−ν, s ∈ R
d , t ∈ R.

3. Parametric examples

Our main model (2.1) gives a much richer class of spacetime covariance models in terms of a
wide selection of the completely monotone function �(x) and the variogram γ (s1, s2; t1, t2),
which one can specialize to meet practical needs such as the data structure, property or
convenience. In this section we give two parametric examples of the model (2.2).

Example 1. Let �(x) = exp(−xν), x � 0, and let γ (s; t) = ‖s‖ν1 + |t |ν2 , where ν ∈ (0, 1],
ν1 ∈ (0, 2] and ν2 ∈ (0, 2] are constants. Then (2.2) reads

C(s; t) = {‖s‖ν1 + |t |ν2 + α1}−d/2 exp

{
− ‖s + θ0t‖2ν

(‖s‖ν1 + |t |ν2 + α1)ν

}

−{‖s‖ν1 + |t |ν2 + α2}−d/2 exp

{
− ‖s + θ0t‖2ν

(‖s‖ν1 + |t |ν2 + α2)ν

}
, s ∈ R

d , t ∈ R.

(3.1)

This function decays exponentially. By numerical calculation, one can see that it takes negative
values. Also, it is differentiable with respective to both s and t if, for instance, ν = 1 and
ν1 = ν2 = 2. A plot of the correlation function, C(s; t)/C(0; 0), is illustrated in figure 1 with
particular choice of parameters.

Example 2. In (2.2) choose �(x) = ln x+b2
x+b1

, x � 0, and γ (s; t) = ‖s − θ0t‖ν where
0 < b1 < b2, and 0 < ν � 2. We obtain

7
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Figure 1. The plot of C( s
50 ; t

50 )/C(0; 0), where C(s; t) takes the form (3.1), α1 = 1,
α2 = 2, ν = 1, ν1 = 2, ν2 = 1, d = 1 and θ0 = 0.5.

Figure 2. The plot of the correlation function C(s; t)/C(0; 0), where C(s; t) is of the form (3.2),
α1 = 1, α2 = 2, b1 = 3, b2 = 4, ν = 2, d = 1, and θ0 = 0.5.

C(s; t) = (‖s − θ0t‖ν + α1)
− d

2 ln
‖s + θ0t‖2 + (‖s − θ0t‖ν + α1)b2

‖s + θ0t‖2 + (‖s − θ0t‖ν + α1)b1

− (‖s − θ0t‖ν + α2)
− d

2 ln
‖s + θ0t‖2 + (‖s − θ0t‖ν + α2)b2

‖s + θ0t‖2 + (‖s − θ0t‖ν + +α2)b1
,

s ∈ R
d , t ∈ R.

(3.2)

Its smoothness relies on the parameter ν. When ν = 2, (3.2) is differentiable with respect to
s and t. Figure 2 shows a plot of (3.2), which changes sign.

8
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4. How are the parameters involved in the model?

The two parameters α1 and α2 are involved in (2.1). It would be helpful to see how the
covariance function (2.1) is affected by α1 and α2. Corollary 2 may be thought of as an
answer to this question, where letting α2 tend to infinity yields a positive covariance function.
Theorem 2 describes the limiting status when α1 and α2 are close to each other. Alternatively,
one may look at the variance of the associated random field

C(s, s; t, t) = α
− d

2
1 − α

− d
2

2 , s ∈ R
d , t ∈ T .

As d tends to infinity, C(s, s; t, t) approaches 0 if α2 � α1 > 1, behaves like α
− d

2
1 if

α2 > 1 > α1 > 0 and like α
− d

2
2 if 1 � α2 > α1 > 0.

Next we make a comparison between (2.1) and the same model but with different
parameters β1 and β2. To this end, let us denote the covariance function (2.1) by
C(s1, s2; t1, t2|α1, α2) with two parameters α1 and α2 involved, and the associated variogram
by γ (s1, s2; t1, t2|α1, α2), i.e.

γ (s1, s2; t1, t2|α1, α2) = 1

2

2∑
k=1

C(sk, sk; tk, tk|α1, α2) − C(s1, s2; t1, t2|α1, α2).

Similar notations apply to C(s1, s2; t1, t2|β1, β2) and γ (s1, s2; t1, t2|β1, β2).

Theorem 4. Let αk and βk (k = 1, 2) be positive constants with α1 < α2 and β1 < β2. If
α2 � β2 > β1 � α1, then

C(s1, s2; t1, t2|α1, α2) − C(s1, s2; t1, t2|β1, β2), (sk; tk) ∈ R
d × T , k = 1, 2,

is the covariance function of a second-order elliptically contoured random field on R
d × T ,

and

γ (s1, s2; t1, t2|α1, α2) − γ (s1, s2; t1, t2|β1, β2), (sk; tk) ∈ R
d × T , k = 1, 2,

is the variogram of a second-order elliptically contoured random field on R
d × T .

Intuitively, theorem 4 claims that when the parameters β1 and β2 are between α1 and α2,
the model with the parameters β1 and β2 has a relatively ‘small’ variation than that with the
parameters α1 and α2. In the stationary case, it can be shown that the ordinary kriging variance
(cf, equation (3.2.17), of [6]) for the model with the parameters β1 and β2 is smaller than that
with the parameters α1 and α2.

A similar comparison can be made between (2.6) and the same model but with different
parameters β1 and β2.

5. Proofs

Proof of theorem 1. Since �(x) is completely monotone on [0,∞), by Bernstein’s theorem,
it is the Laplace transform of a bounded, nondecreasing function F(u), u � 0, that is,

�(x) =
∫ ∞

0
exp(−xu) dF(u), x � 0.

Hence, (2.1) is the same as

9
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C(s1, s2; t1, t2) = {γ (s1, s2; t1, t2) + α1}− d
2

∫ ∞

0
exp

(
−‖s2 − s1 + θ0(t2 − t1)‖2u

γ (s1, s2; t1, t2) + α1

)
dF(u)

− {γ (s1, s2; t1, t2) + α2}− d
2

∫ ∞

0
exp

(
−‖s2 − s1 + θ0(t2 − t1)‖2u

γ (s1, s2; t1, t2) + α2

)
dF(u)

=
∫ ∞

0
Cu(s1, s2; t1, t2)dF(u), s1, s2 ∈ R

d , t1, t2 ∈ T ,

where

Cu(s1, s2; t1, t2) = {γ (s1, s2; t1, t2) + α1}− d
2 exp

(
−‖s2 − s1 + θ0(t2 − t1)‖2u

γ (s1, s2; t1, t2) + α1

)

−{γ (s1, s2; t1, t2) + α2}− d
2 exp

(
−‖s2 − s1 + θ0(t2 − t1)‖2u

γ (s1, s2; t1, t2) + α2

)
,

u � 0, s1, s2 ∈ R
d , t1, t2 ∈ T .

Therefore, it suffices to show that for every constant u � 0, Cu(s1, s2; t1, t2) is a covariance
function on R

d × T .
Using the formula

(2π)d/2|A|−1/2 exp

(
−1

2
x′A−1x

)
=

∫
Rd

exp

(
ıω′x − 1

2
ω′Aω

)
dω, x ∈ R

d ,

and substituting x by {s2 − s1 + θ0(t2 − t1)}
√

2u and A by {γ (s1, s2; t1, t2) + α1}Id or
{γ (s1, s2; t1, t2) + α2}Id , where Id is a d × d identity matrix, we rewrite Cu(s1, s2; t1, t2)

as

Cu(s1, s2; t1, t2) = (2π)−
d
2

∫
Rd

cos{
√

2uω′(s2 − s1 + θ0(t2 − t1))}

× exp

{
−1

2
γ (s1, s2; t1, t2)‖ω‖2

} {
exp

(
−α1

2
‖ω‖2

)
− exp

(
−α2

2
‖ω‖2

)}
dω.

This is indeed a covariance function on R
d × T as a mixture of the nonnegative function

exp
( − α1

2 ‖ω‖2
) − exp

( − α2
2 ‖ω‖2

)
on R

d , because for every ω ∈ R
d , cos

{√
2uω′(s2 −

s1 + θ0(t2 − t1))
}

is a covariance function on R
d × T , and by Schoenberg’s theorem,

exp
{− 1

2γ (s1, s2; t1, t2)‖ω‖2
}

is a covariance function on R
d × T . �

Proof of theorem 2. Let us introduce an auxiliary variable δ on the interval (0, 1), and
consider the function

C(s1, s2; t1, t2; δ) = {γ (s1, s2; t1, t2) + α + δ}− d
2 �

(‖s2 − s1 + θ0(t2 − t1)‖2

γ (s1, s2; t1, t2) + α + δ

)
,

s1, s2 ∈ R
d , t1, t2 ∈ T .

According to theorem 1, C(s1, s2; t1, t2; 0) − C(s1, s2; t1, t2; δ) is a covariance function on
R

d × T , so is

δ−1{C(s1, s2; t1, t2; 0) − C(s1, s2; t1, t2; δ)}, s1, s2 ∈ R
d , t1, t2 ∈ T .

Letting δ approach 0 yields a new covariance function on R
d × T , which is, by L’Hospital’s

rule,

lim
δ→0+

δ−1{C(s1, s2; t1, t2; 0) − C(s1, s2; t1, t2; δ)} = − lim
δ→0+

∂

∂δ
C(s1, s2; t1, t2; δ)

= C(s1, s2; t1, t2),

and thus coincides with (2.5). �

10
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Proof of theorem 3. The proofs of parts (ii) and (iii) are similar to those of corollary 3.
To show part (i), note that, by Schoenberg’s theorem, exp{−γ (s1, s2; t1, t2)u} is a covariance
function on R

d × T for every fixed u � 0, so is its nonnegative mixture

1

�(ν)

∫ ∞

0
exp{−γ (s1, s2; t1, t2)u}{exp(−α1u) − exp(−α2u)}uν−1du

= {γ (s1, s2; t1, t2) + α1}−ν − {γ (s1, s2; t1, t2) + α2}−ν . �

Proof of theorem 4. Using the approach in the proof of theorem 1, we rewrite C(s1, s2; t1, t2
|α1, α2) − C(s1, s2; t1, t2|β1, β2) as

C(s1, s2; t1, t2|α1, α2) − C(s1, s2; t1, t2|β1, β2)

=
∫ ∞

0
{Cu(s1, s2; t1, t2|α1, α2) − Cu(s1, s2; t1, t2|β1, β2)} dF(u),

s1, s2 ∈ R
d , t1, t2 ∈ T ,

where

Cu(s1, s2; t1, t2|α1, α2) = {γ (s1, s2; t1, t2) + α1}− d
2 exp

(
−‖s2 − s1 + θ0(t2 − t1)‖2u

γ (s1, s2; t1, t2) + α1

)

−{γ (s1, s2; t1, t2) + α2}− d
2 exp

(
−‖s2 − s1 + θ0(t2 − t1)‖2u

γ (s1, s2; t1, t2) + α2

)
,

and

Cu(s1, s2; t1, t2|β1, β2) = {γ (s1, s2; t1, t2) + β1}− d
2 exp

(
−‖s2 − s1 + θ0(t2 − t1)‖2u

γ (s1, s2; t1, t2) + β1

)

−{γ (s1, s2; t1, t2) + β2}− d
2 exp

(
−‖s2 − s1 + θ0(t2 − t1)‖2u

γ (s1, s2; t1, t2) + β2

)
,

u � 0, s1, s2 ∈ R
d , t1, t2 ∈ T .

Also, Cu(s1, s2; t1, t2|α1, α2) − Cu(s1, s2; t1, t2|β1, β2) can be expressed as

Cu(s1, s2; t1, t2|α1, α2) − Cu(s1, s2; t1, t2|β1, β2)

= (2π)−
d
2

∫
Rd

cos{
√

2uω′(s2 − s1 + θ0(t2 − t1))} exp

{
−1

2
γ (s1, s2; t1, t2)‖ω‖2

}

×
{

exp
(
−α1

2
‖ω‖2

)
+ exp

(
−β2

2
‖ω‖2

)

− exp
(
−α2

2
‖ω‖2

)
− exp

(
−β1

2
‖ω‖2

)}
dω,

which is a covariance function on R
d × T once we are able to verify that

exp
(
−α1

2
‖ω‖2

)
+ exp

(
−β2

2
‖ω‖2

)
− exp

(
−α2

2
‖ω‖2

)

− exp

(
−β1

2
‖ω‖2

)
� 0, ω ∈ R

d . (5.1)

In fact, since exp(−x‖ω‖), x � 0, is a convex and decreasing function of x ∈ [0,∞), the
function

φ(x1, x2) = exp(−x1‖ω‖) + exp(−x2‖ω‖), x1, x2 � 0,

is Schur-convex on [0,∞) × [0,∞) (see proposition C.1, p 64, of [28]), for a fixed ω ∈ R
d .

By assumption, α1 < α2, α1 � β1 < β2, and α1 +β2 � β1 +α2, so that the vector (α2/2, β1/2)

11
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is weakly supermajorized by the vector (α1/2, β2/2). Thus, it follows from proposition C.1.b.,
p 64, of [28] that

φ

(
α2

2
,
β1

2

)
� φ

(
α1

2
,
β2

2

)
,

which confirms inequality (5.1).
Finally, the variogram associated with C(s1, s2; t1, t2 |α1, α2) − C(s1, s2; t1, t2|β1, β2) is

1

2

2∑
k=1

{C(sk, sk; tk, tk|α1, α2) − C(sk, sk; tk, tk|β1, β2)}

− {C(s1, s2; t1, t2|α1, α2) − C(s1, s2; t1, t2|β1, β2)}
= γ (s1, s2; t1, t2|α1, α2) − γ (s1, s2; t1, t2|β1, β2). �

6. Discussions

To have a better description of a random field, it is necessary to know its finite-dimensional
distributions. In the Gaussian case, its finite-dimensional distributions are completely specified
by its mean and covariance functions, and, more importantly, there is not a restriction or a tight
connection between its mean and covariance functions, unlike log-Gaussian or χ2 cases [27],
[29] so that the Gaussian random field can be relatively easily handled for applications. The
class of elliptically contoured random fields contains the Gaussian case as a particular case,
and keeps some important Gaussian features. For instance, finite-dimensional distributions
of a second-order elliptically contoured random field are completely specified by its mean
function and its covariance function that is fully characterized by the positive definiteness.
The advantage of being easy to manipulate analytically would make second-order elliptically
contoured random fields work effectively for studying various correlation effects in physics
and applied sciences.

The main result of this paper is the derivation of a class of the spacetime Gaussian and
second-order elliptically contoured random fields having a nonseparable covariance function
by using the nonnegative mixture approach. The covariance functions have been shown to
allow both positive and negative correlations. Some properties of these random fields, in
particular, their spacetime stationarity, long-range dependence, parameter dependence, have
been studied. Below we give a couple of examples showing the potential use of this formulation
in some specific physical situation where non-Gaussian statistics is demanded.

Liebovitch et al [20] studied physiological relevance of scaling of heart phenomena, with
heart rate data from people who are healthy, from people who have a specific sleep disorder
and from people who have irregular heart rhythms, and found that the data have fractal rather
than Gaussian distributions or have long-range correlation. A further investigation of their
experimental data may be performed for what they called the power-law form of the PDF, or
Student’s t random field [26], which is an elliptically contoured random field. Other examples
of the power-law form of the PDF may be found in [4], [5], [11].
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